
THE AUTOMATOR : INTELLIGENT CONTROL SYSTEM MONITORING*

M. Bickley, D. A. Bryan#, K. S. White,
Thomas Jefferson National Accelerator Facility, Newport News, VA

Abstract

A large scale control system may contain several
hundred thousand control points which must be
monitored to ensure smooth operation. Knowledge of the
current state of such a system is often implicit in the
values of these points and operators must be cognizant of
the state while making decisions. Repetitive operations
requiring human intervention lead to fatigue, which can
in turn lead to mistakes. The authors propose a tool
called the Automator based on a middleware software
server. This tool would provide a user configurable
engine for monitoring control points. Based on the status
of these control points, a specified action could be taken.
The action could range from setting another control
point, to triggering an alarm, to running an executable.
Often the data presented by a system is meaningless
without context information from other channels. Such a
tool could be configured to present interpreted
information based on values of other channels.
Additionally, this tool could translate numerous values in
a non friendly form (such as numbers, bits, or return
codes) into meaningful strings of information. Multiple
instances of this server could be run, allowing
individuals or groups to configure their own Automators.
The configuration of the tool will be file based. In the
future these files could be generated by graphical design
tools, allowing for rapid development of new
configurations. In addition the server will be able to
explicitly maintain information about the state of the
control system. This state information can be used in
decision making processes and shared with other
applications. A conceptual frame work and software
design for the tool are presented.

1 INTRODUCTION
Distributed and networked control systems have become
very common for use in the control of large scale
experimental systems, such as particle accelerators or
telescopes, as well as for industrial control systems. As
the scale of these control systems has increased, the
number of parameters for controlling the system has
increased as well. A large modern control system may
have as many as a quarter million control parameters.

With such a large number of control parameters,
determining the overall status of the control system or of

 * This work was supported by U.S. D.O.E. contract #DE-AC05-

 84ER40150

 # Email: bryan@jlab.org

large subsystems has become difficult. This high-level
view can be thought of as a “meta-parameter”, a value
which implicitly contains information obtained from
many individual signals.
 Users often must view tens or even hundreds of
signals and infer the state of the machine from these
values. Archiving information about these “meta-
parameters” is difficult since one needs to archive the
many individual signals and later post process the data to
obtain these meta-parameters. This increases the volume
of information that must be archived. Clearly it would be
better to be able to dynamically monitor the individual
values and create this “meta-parameter” as a single
control system variable.

2 PRACTICAL CONSIDERATIONS
There are many ways to implement these meta-
parameters, but some considerations could make them
more useful. At an existing facility, there is most likely a
large collection of tools in place to deal with existing
control system parameters. These tools would include
viewers, archivers, dynamic data analysis packages, etc.
The tools are usually well tested and the operations crew
is familiar with their use. This situation makes it
desirable for the new meta-parameters be available to the
control system using the same protocol as the existing
signals. This approach allows for maximum code reuse.

Most facilities control hardware with a collection of
front-end machines which monitor the hardware and
make information about the hardware available to the
control system as signals. The tools mentioned above run
on back-end machines, often UNIX or PC based.

One approach to solving this problem would be to
simply create a new signal on the front end server that
contains the meta-parameters. This could be
implemented via communication between front-end
machines. In practice, this presents a number of
problems. First, the front-end machines are usually
responsible for critical operation of the hardware. As
such, increasing the workload of these machines or
modifying tested software is often undesirable. In
addition, the meta-parameters that one is interested in
may change frequently, perhaps even while the system is
running. If these variables are placed directly on the
front-end machines, modifying them could interfere with
the operation of the control system.

Similarly, placing the processing of these meta-
parameters in each client has drawbacks. Each client
must be modified in order to use the new variables, and

0-7803-5573-3/99/$10.00@1999 IEEE. 735

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999

each must keep a separate copy of the logic needed to
infer the meta-parameter from existing variables.

3 IMPLEMENTATION AS MIDDLEWARE
The authors have decided to implement the desired
functionality using a middleware server [1]. Such a
server is a piece of software which monitors signals from
some source, in this case the front-end machines. These
servers then produce new signals for the destination,
such as the back-end machines. One can then treat these
signals in the same way as the original signals. These
new channels are often called virtual signals.

At the Thomas Jefferson National Accelerator Facility
(JLab), there has been considerable positive experience
with using such servers for various applications. Each
server has been written individually as a separate
program. The authors’ proposal is for a general purpose,
user configurable program for creation of these special
meta-parameters.

JLab uses CDEV, or Common DEVice, to
communicate with the underlying EPICS control system.
CDEV provides a generic server framework for allowing
users to write such middleware servers. The Automator
will be based on this CDEV Generic Server. [2,3,4]

4 DESIGN AND INTERFACE
The program provides the frame work to define a server
for creation of new signals or to react to these new
values. Users will configure the Automator by generating
a configuration file. The configuration file contains
information on the name of the server instance to be
created and information about the interrelation of
modules. These modules can perform a number of tasks.
They can either monitor a variable in the system or
produce a new signal to be used by client programs.
They can process incoming signals. Finally, they can
take an action such as executing a script. These modules
are connected together to define the structure of an
instance of an Automator, as shown in figure 1.
 The user creates modules to monitor the desired
signals and connects these to gates. Initially, the gates
available will be simple, logic-based gates such as noting
if a monitored value is within certain limits, logical
“AND” g ates, logical “OR” gates, and similarly simple
structures. The user then connects the outputs of these
gates to either a new signal to be monitored, an object
which modifies a value in the control system or
something which executes an action. By allowing for an
arbitrary script to be executed, the tool can be used to
automatically respond to problems in the control system.

Initially, the user will define the structure of an
Automator instance by directly editing the configuration
file. Eventually this process will be automated to allow a
schematic capture tool to be used to create these files
graphically.

The Automator will be implemented using C++ in
such a way that the gates can be easily defined by users.
The gates will be implemented as C++ objects. The user
can create new ones by inheriting from the base object
and defining the operation of the new gate. This will
allow for more complicated, “intelligent” gates to be
developed to handle site specific concerns. It is hoped
that as the Automator is used at more sites, developers
will share these modules, promoting software sharing
and reducing development time for developers.

Monitor CDEV signal

User defined process (gate)

Modify Existing Signal

New CDEV signal

Execute Action

Figure 1 : Automator Configuration Layout

5 ADVANTAGES

5.1 Operational Advantages

At a large facility, there are typically many simple but
repetitive tasks that operators must perform manually.
The tasks never seem to be pressing enough to warrant
the development of a software tool to respond
automatically. The Automator will allow rapid
development of such responders.

736

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999

Similarly, short term procedure changes and
temporary workarounds can present problems that
interfere with operations. These special instructions
must be given to all personnel operating the machine and
they must know the new limits or procedures to follow
for a particular device. JLab’s main accelerator is run
twenty-four hours a day by three crews working on
alternating seven day shifts. By automating such
processing, the chance of instructions getting lost or
distorted during crew changes is reduced.

Finally, such a tool allows software developers to
capture some of the knowledge of a trained operator or
technical specialist. If the operator’s response to a
certain condition is quantifiable it can be translated into
an instance of the Automator. This response is then
available even when the skilled operator is not.

5.2 Development Advantages

In addition to advantages to operators and all of the
development advantages discussed above, the Automator
provides a few more advantages. By controlling when
and under what conditions certain tools are invoked, the
developer can build complex tools from collections of
small, tested, known good applications. The developer
can also use the Automator to prototype servers (if they
can be easily described by a collection of gates), and to
monitor the control system for transient behavior that
may lead to problems.

This design has several advantages over other tools
designed to provide similar functionality. SDDS is a
collection of scripts designed to be used together by
piping the output of one script to another, providing
some of the processing abilities of the Automator [5].
Because these scripts post-process data stored in SDDS
files, they cannot provide the processed data to users
dynamically. The Automator is a compiled program
rather than a sequence of scripts connected using UNIX
I/O, which should allow faster execution time. While
there is some overlap the Automator is generally
designed to provide simple but dynamic processing and
response, while SDDS is intended to provide more
complex offline processing.

Some of the automated response functionality can be
provided by EPICS sequencer programs [6]. The
fundamental difference between a sequencer instance
and an Automator instance is the level in the control
system where the response is taken. By running the
Automator as a UNIX process access to common
scripting languages for invoking responses is simplified.
Additionally, changing a running instance of the
Automator would be straightforward and would not
interfere with the operation of the control system as
modifying a sequence on a front end machine would. If
one wishes to modify the action taken by the Automator
in response to certain conditions one can substitute a new
script in place of the old. Modifying logic for running

these scripts or producing new signals would require
generating a new initialization script and restarting the
Automator, but this could still be accomplished without
interrupting the front end machine of the control system.

5.3 Diagnostic Advantages

Finally, by allowing for rapid development of tools to
monitor the control system, individuals responsible for
diagnosing problems with the system being controlled
can easily develop one-off diagnostic tools. Since the
tool can be configured to monitor signals constantly,
noting and observing transient behavior is easier than
with some other methods.

6 CONCLUSION
This tool is currently under development and a Beta
version is expected in the next few months. The authors
feel this will provide a powerful new tool to help in the
operation of large scale control systems.

7 REFERENCES
[1] M. Bickley, B. A. Bowling, D. Bryan, J. van Zeijts, K. White, S.

Witherspoon, “Using Servers to Enhance Control System
Capability”, these proceedings (1999)

[2] J. Chen, G. Heyes, W. Akers, D. Wu and W. Watson III, “CDEV:
An Object-Oriented Class Library for Developing Device Control
Applications”, Proceedings of ICALEPCS 1995

[3] http://www.aps.anl.gov/asd/controls/epics/EpicsDocumentation/
EpicsGeneral/epics_overview.html

[4] W. Akers, “An Object-Oriented Framework for Client/Server
Applications”, Proceedings of ICALEPCS 1997

[5] http://www.aps.anl.gov/asd/oag/oagSofware.html

[6] http://www.aps.anl.gov/asd/controls/epics/EpicsDocumentation/
ExtensionsManuals/Sequencer/snl_seq.ps

737

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999

