
34 March 2007 ACM QUEUE rants: feedback@acmqueue.com

Decentralizing SIP
DAVID A. BRYAN AND BRUCE B. LOWEKAMP, SIPEERIOR TECHNOLOGIES

If you’re looking for a

 low-maintenance IP

 communications network,

 peer-to-peer SIP might

 be just the thing.

Session Initiation
ProtocolFO

CU
S

ACM QUEUE March 2007 35 more queue: www.acmqueue.com

Decentralizing SIP
DAVID A. BRYAN AND BRUCE B. LOWEKAMP, SIPEERIOR TECHNOLOGIES

SIP (Session Initiation Protocol) is the most popular
protocol for VoIP in use today.1 It is widely used
by enterprises, consumers, and even carriers in
the core of their networks. Since SIP is designed
for establishing media sessions of any kind, it is
also used for a variety of multimedia applications
beyond VoIP, including IPTV, videoconferencing,
and even collaborative video gaming.

In the past three years, interest in decentralized,
peer-to-peer SIP (P2PSIP) has increased. P2PSIP
removes or reduces the number of centralized
servers needed in a SIP deployment.2,3,4,5 There has
been much speculation that this interest can be
attributed to Skype, the popular pseudo-P2P com-
munications service (Skype still tightly centralizes
authentication, billing, and admission control).
Although one potential use is to build a SIP-based,
low-cost, server-less worldwide network, much of
the interest has to do with enabling SIP to operate
in deployments where conventional server-based
SIP isn’t well suited.

One major deployment scenario where P2PSIP
appears superior to a server-based solution is
for small-office deployments where users may
have little or no technical support capacity. The
self-organizing aspects of P2P lend themselves
to systems that are far easier to configure and

36 March 2007 ACM QUEUE rants: feedback@acmqueue.com

manage than even simple centralized servers. For small-
office applications, configuration may consist of nothing
more than typing an extension number into each device.
P2PSIP is also being considered to provide highly reliable
systems because of its lack of a single point of failure, and
as a mechanism for sharing information between existing
SIP servers in larger deployments. Outside of the obvious
telephony applications, P2PSIP shows promise for discon-
nected or ad hoc communications environments, emer-
gency responder networks, and even clusters of consumer
electronics devices streaming media to one another.

In this article, we explain what P2PSIP is, how it differs
from conventional SIP, where this technology is being
used, efforts toward standardization, and the future of
P2PSIP. First, we take a look at the basics of P2P technol-
ogy, particularly which types of P2P are being used or
considered for P2PSIP.

WHAT IS P2P?
A variety of definitions exist for P2P systems, which can
even be P2P to a greater or lesser degree. At the most
basic level, a P2P system is one where multiple software
applications interact directly with one another as peers
to accomplish a task. The group of peers as a whole is
often referred to as an overlay. This is in contrast to the
more traditional client-server model, where one central-
ized piece of software (the server) processes requests
from numerous clients. Choosing P2P or client-server is
an architectural decision about where the processing of
information takes place. For deployment scenarios such
as disconnected networks of devices, a P2P solution may
be the only option available. In other deployments, the
choice is dictated by economic or configuration consider-
ations, and the end user may be unaware of, and perhaps
not even care, where the processing takes place.

The belief that P2P is a fundamentally new idea is a
common misconception. Many common network proto-
cols, including BGP (Border Gateway Protocol) and even
SMTP, are arguably P2P, but between instances of servers
or routers. Like many aspects of the Internet, we are now
seeing this architecture moving to the edge. Increas-
ingly peer groups are made up of end-user applications,
in contrast to groups of managed servers. When people
refer to something as P2P today, they generally mean P2P
between end-user applications.

A P2P architecture doesn’t necessarily imply that every
peer must provide every service or store all the available
data. Collectively, all the peers in the overlay must pro-
vide all services, but any one particular peer may provide
only a fraction. For example, a collection of peers replicat-

ing a database might each store a small number of entries
from the database. If a very large group of peers splits up
the task, the odds of one particular entry being on a given
peer are quite low, but at least one peer in the overlay will
store a given entry, guaranteeing that as a group the peers
provide the full database service.

In contrast to centrally managed servers, in many P2P
systems peers are assumed to be ephemeral in nature.
Because the peer software may be running on unmanaged
end-user machines, they may be available only while the
software is running and may disconnect at any time for a
variety of reasons. The constant change in the makeup of
the peers in the overlay, referred to as churn, is an impor-
tant consideration in developing P2P applications.

In some P2P architectures, a subset of the peers pro-
vides more services than the others. These peers, often
called super-peers, may even be the only peers provid-
ing services. In such architectures, the super-peers may
collectively replace the servers, with the remaining peers
behaving essentially as clients communicating with the
super-peers for their services. This approach is often
used in the presence of NATs (network address transla-
tors), where peers behind NATs may be unable to receive
requests and therefore can’t fully participate as peers.

Yet another common variation of P2P is the hybrid
architecture. Hybrid P2P systems use a centralized server
to locate a particular peer offering a service, but the
service takes place directly between the peers. The best-
known use of P2P, online file sharing, often worked this
way. Each peer sharing files published a list to a central
server. A user looking for a specific file searched on the
central server to locate a peer with that file, then trans-
ferred the file directly from the peer that was storing
it. Today’s SIP systems can be thought of as hybrid P2P
systems.

As P2P technology has evolved, the mechanisms to
distribute and locate data have fallen into two broad
categories, unstructured and structured.

UNSTRUCTURED P2P
The earliest P2P systems were unstructured (figure 1). In
these unstructured systems, the peers are organized in a
haphazard way. Each new peer locates and connects to
one or a few other peers in the overlay. There is no mech-
anism for selecting to which peers a new peer connects;
any available peer will do. As a result, some peers may be
connected to only a few other peers, while others may be
connected to many. The data stored or services provided
by each peer are similarly randomly distributed. For data
storage, this means any peer in the overlay can store a

Session Initiation
ProtocolFO

CU
S

ACM QUEUE March 2007 37 more queue: www.acmqueue.com

given piece of information, and that the information may
not be well distributed among the peers. The connection
between the peers is a logical structure, meaning that the
connections don’t have to be related to the underlying
physical network in any way.

Such an arrangement is easy to form and requires little
overhead to maintain, but searching can be very difficult.
Because any peer can store the information, every peer
must be queried to be certain the data isn’t present in the
overlay. Because the structure is random, it is impossible
to know how many other peers a peer will be connected
to, or how many hops away the farthest peer will be.
Peers can be easily split from the overlay, since there is
no structure ensuring redundant links between portions
of the overlay. Exhaustive searches can be very time
consuming in large networks, and limiting the search by
capping the depth of the searches results in nondetermin-
istic searches, since not every peer is consulted.

For these reasons, unstructured P2P has fallen out of
favor for use in large or Internet-scale deployments. For
smaller deployments, or deployments where the underly-
ing network itself may have an unstructured arrangement
(particularly sensor networks and other ad hoc or wireless
network arrangements), this approach has proven to be
well suited and is still widely used.

STRUCTURED P2P AND DHTS
In contrast, in a structured P2P architecture (figure 2) the
peers are connected to one another in a defined, logical
structure—for example a ring, tree, or grid. Many arrange-
ments are possible, but in most, peers are assigned a
(hopefully) unique identifier when they join the overlay.
This peer identifier, or PeerID, could be assigned by some

out-of-band mechanism, selected randomly, or most
commonly, determined by hashing a property of the
peer such as the IP address. The PeerID determines which
other peers the new peer makes connections with. For
example, the new peer may connect to peers with identi-
fiers that are “close” in some mathematical sense such as
numerical value or number of matching binary digits.

Since the connections between peers are carefully
controlled, a well-designed structured P2P algorithm can
ensure that each peer is connected to several others, pre-
venting partitioning when a single peer fails. Because the
structure of the overlay is controlled, the total distance
between any two peers can be controlled, limiting the
number of hops between them.

One particular flavor of structured P2P that is widely
deployed is the DHT (distributed hash table). Some of
the most widely discussed DHT algorithms today include
Chord, Kademlia, and Bamboo.6,7,8 In a DHT, not only is
the structure of connectivity between the peers controlled
in a mathematical way, but the placement of resources
onto the peers is as well. Each resource is assigned an
identifier, or ResourceID, in the same identifier space
as the PeerID. That is, the range of values a PeerID or
ResourceID can take on are the same. The ResourceID is
the hash of a property of the resource such as a filename
or keyword. A resource’s keyword is hashed to produce a
ResourceID, and the peer with the “closest” PeerID stores
the resource. Both the definition of close and provisions
for redundancy are dependent on the particular DHT
algorithm used.

For example, if a ring-like structure is used as the logi-
cal structure for connecting the peers, a resource with
a ResourceID of n might be stored on the peer with the

An Unstructured P2P Overlay

FIG 1

A Structured P2P Overlay

FIG 2

38 March 2007 ACM QUEUE rants: feedback@acmqueue.com

PeerID closest to but larger than n (see figure 3). In this
case, we show five peers (circles), with PeerIDs of 100,
200, 300, 400, and 500. The system stores two resources,
with ResourceIDs of 345 and 444, shown by squares. The
arrows indicate which peer is responsible for storing each
resource in the system.

When some other peer wants to locate a resource
later, it hashes the distinguishing name of that resource
and uses the overlay to contact the peer with the near-
est PeerID. That peer provides the resource if present, or
it can report that the resource doesn’t exist if it is not
stored by the overlay. This mechanism requires fewer
messages to be sent to locate data and provides determin-
istic search, ensuring that the unique responsible peer is
queried for the resource.

Since each peer connects directly only to some subset
of the entire overlay, the search may still take more than
one hop. A peer may ask a neighbor that is closer to
the desired PeerID, which then asks another still closer
neighbor, etc. Most of the DHTs used today are structured
in such a way that they can guarantee that at most log(n)
peers, where n is the total number of peers in the overlay,
must be consulted to locate a particular peer. Although
this is obviously a higher search cost than the direct
query and response of a client-server network, it results in
relatively low search times even for overlays with a large
number of peers, while eliminating central servers.

SIP IS ALREADY (MOSTLY!) DECENTRALIZED
Why all the interest in trying to make SIP P2P? Why not
create a new protocol? Starting with an existing standard
allows leveraging work that has already been done—sev-

eral years of effort in the case of SIP. Additionally, SIP has
many features that make it attractive for conversion to
P2P. SIP was designed to move as much functionality as
possible to the edges. SIP endpoints are intelligent in that
most call signaling is handled between the endpoints.
When a call is established, the messages initiating the
call, indicating call progress (ringing and answering, for
example), and terminating the call all originate on the
endpoints. Capabilities such as feature sets and available
media codecs are negotiated directly between the end-
points as well. Once the call is established, media flows
directly between the endpoints. In fact, if two SIP phones
are configured so they each believe the other phone is
the SIP server, they will communicate and use all features
between themselves perfectly. No servers required!

What is centralized in SIP is resource location. Con-
necting two phones by convincing each the other is a
server proves that the features and protocol work between
them, but it doesn’t prove much else. The primary pur-
pose of the SIP server is to locate other endpoints.

In a conventional SIP network, each phone commu-
nicates with the central SIP registrar server. Each user has
an AoR (address of record), typically a username or phone
number. The registrar maintains a mapping between the
AoR and the IP address of that user’s phone. Each entry
mapping one AoR to an IP address is called a registra-
tion. When one user wishes to call another, the first
user’s phone contacts the SIP proxy, which contacts the
registrar. The registrar looks up the requested AoR and
returns the IP address to the proxy. The proxy then uses
the address to proxy the call to the destination phone.

In many networks, the proxy and the registrar are
implemented as one software package, called simply a SIP
server, or confusingly, sometimes just a proxy. The central
server does little for the call other than ensuring that the
endpoints are able to locate each other. As previously
noted, SIP in many ways already qualifies as a hybrid
P2P system. The intelligence and services reside in the
endpoints, and a centralized server is used simply to allow
the peers—in this case SIP phones—to locate each other
and communicate.

P2PSIP: REMOVING THE REGISTRAR
P2PSIP can be thought of as taking the last vestigial
centralized functions in SIP and distributing them among
the phones. The most important centralized aspect of a
SIP system is the registrar, and the core of P2PSIP is a fully
decentralized, server-less registrar replacement. In P2PSIP,
the peers store the registrations, rather than the central-
ized server.

Session Initiation
ProtocolFO

CU
S

Resource Storage in a Ring-like DHT

345

400

444

500

100

200

300

FIG 3

ACM QUEUE March 2007 39 more queue: www.acmqueue.com

Some early commercial attempts at P2P telephone sys-
tems took a “replicate everything everywhere” approach,
using a broadcast mechanism to exchange data. Each
phone periodically broadcasts user registration informa-
tion. Every other phone sees the broadcasted registration
and stores the mapping. If a phone drops off the network,
it no longer periodically broadcasts, and the registration
is eventually removed from the other phones’ registra-
tion tables. To place a call a phone simply looks up the
number it wishes to call in the local table of registrations
and places the call directly between the phones.

While this approach works for small-office systems, it
has a number of drawbacks. First, the broadcast mecha-
nism is poorly suited for overlays that span multiple
networks. Broadcast traffic (in general) does not sur-
vive crossing routers, precluding overlays of distributed
users—for example, a group of consumers on the broader
Internet. Scalability is also a problem for such systems,
since each peer needs to store information about every
other peer.

More recently, a number of companies, as well as the
IETF (Internet Engineering Task Force), have focused on
using a structured P2P approach that works for both large
and small systems. In particular, designs build on a DHT.
Each phone serves as a peer in the overlay. The phone is
assigned a PeerID, either the hash of an IP address or a
value assigned by a centralized security server. Once the
server assigns a PeerID, the server never needs to be con-
sulted again during basic operation. The AoR of the user
of that phone is hashed into the same space to produce a
ResourceID, and the nearest peer stores the registration.
Each peer is responsible for some portion of the identifier
space; therefore, some of the registrations are stored on
each peer.

As with any DHT, each peer knows about some fixed
number of peers distributed across the overlay. To route a
message, the peer with the closest PeerID to the requested
ResourceID is selected from the list of known peers. The
message is then sent to this closest known peer. The
process repeats, converging on the peer with the nearest
value.

When a phone joins the overlay, it determines its
PeerID and exchanges some messages to place itself into
the overlay. This process is called peer joining, since it
is the process by which the phone becomes one of the
responsible peers in the overlay. The peer learns about
other peers in the overlay so it can route messages, inserts
itself into the overlay, and becomes responsible for some
portion of the identifier space. Since some other peer
used to be responsible for storing the registrations in that

portion of the identifier space, those registrations are
transferred to the new peer during the join process. At
this stage, the phone itself has become part of the overlay
and can participate in storing and locating resources,
but the registration of the user of the phone has not yet
been accomplished. As peers leave, they should hand
stored resources to other devices, but various redundancy
schemes are employed to prevent loss of data in the event
that one or more phones fails and takes some informa-
tion with it.

The next step is to hash the username or phone exten-
sion to produce a ResourceID for that user. A message
is constructed, containing a mapping between the AoR
and the IP address of the phone. In conventional SIP,
this message would be sent to the centralized registrar. In
P2PSIP, the registration message is instead routed through
the hops of the overlay. Once the message reaches the
responsible peer, it stores the mapping, responding to
the sender to indicate success. As with conventional SIP,
these registrations last for a finite period of time and must
be refreshed periodically to prevent stale registrations.
A well-behaved peer will request that any registrations
for its associated user be removed in the case of a clean
shutdown.

When a user wants to call another party, the AoR is
again hashed, producing a ResourceID for the party to
be called. A query message (or, alternatively, the message
to initiate the call directly) containing the AoR is routed
through the hops of the overlay to the peer responsible
for the ResourceID. If the message is a query, the receiving
peer looks in its local table of mappings and returns the
IP address of the requested username or phone extension,
or it returns a not-found if the value isn’t stored. If the
message received is to initiate the call directly, the peer
sends back a not-found if the value isn’t stored; other-
wise, it forwards the message to the IP address stored in
the registration map.

Once the destination peer is reached, the call occurs
between the two peers without any further involvement
of the overlay. The beauty of P2PSIP is that the interac-
tion between the peers at this stage is pure SIP. Imple-
menters who are building on existing SIP deployments
can reuse existing code for features, enhancements, etc.
Existing SIP devices can also be easily incorporated simply
by pushing a registration into the overlay of the conven-
tional SIP device.

SECURING THE OVERLAY
The proposed mechanism in the IETF, as well as the
mechanism chosen for some commercial deployments, is

40 March 2007 ACM QUEUE rants: feedback@acmqueue.com

to issue each user in the overlay a certificate. A centralized
server issues this certificate, but that server does not have
to be consulted again. Instead, the new phone, when first
joining, presents the public portion of the certificate to
the overlay, which stores it. Since the same central server
that issued the other phones’ certificates has signed the
certificate, it can easily determine that the new phone’s
certificate is valid. The public part of the certificate
remains in the overlay and can be retrieved by a caller
and used to encrypt traffic sent to the new phone. In this
way, the certificates provide security both for the integrity
of the overlay and for media between users of the overlay.

INTEROPERABILITY AND ADVANCED FEATURES
Most of the features in SIP can be used in a P2PSIP man-
ner unmodified. SIMPLE (SIP for Instant Messaging and
Presence Leveraging Extensions) is a set of IM and pres-
ence extensions for SIP. SIMPLE-based IM will work in a
P2P deployment with essentially no modification. Pres-
ence requires some modification, however. In a conven-
tional SIMPLE presence environment, each user publishes
information about his or her status to a centralized server,
and interested parties subscribe to the presence informa-
tion. Since a P2PSIP deployment has no centralized serv-
ers, the presence information must be stored on the peers.
The same mechanism used for locating the registration
information for a peer can be used to locate a responsible
peer for presence updates. Although this requires each
peer to implement presence server behavior, the addi-
tional overhead required has not proven to be large.

One of the driving reasons to use SIP for a new server-
less communications protocol is a desire for interoper-
ability. While registration is distributed in a P2PSIP
deployment, basic call signaling is performed using con-
ventional SIP. This means that interoperability is reduced
to the problem of locating the remote party. P2PSIP
endpoints that fail to locate a remote party in the overlay
can fall back to conventional DNS-based lookup of the
SIP address. Static registrations can be stored into the
overlay by a helper application, allowing P2PSIP systems
to locate and directly communicate with SIP endpoints,
gateways, or even application servers. Conventional SIP
calls to a P2PSIP system are performed in a similar way.
Either a static route to the P2PSIP domain is configured
into the conventional SIP server, or one or more peers is
consistently available and associated with a DNS-resolv-
able address, allowing the P2PSIP overlay to be reached
using conventional SIP DNS-based resolution techniques.

Voicemail is another feature that must be handled
differently in a P2PSIP deployment. In conventional SIP

systems, voicemail is stored on a centralized voicemail
system. P2PSIP systems can still be configured to use a
voicemail server, of course, but since much of the motiva-
tion behind P2PSIP involves distributing as much intel-
ligence as possible, this isn’t a practical approach.

Storing voicemail in the overlay is essentially the same
as using an overlay for file sharing, since voicemail mes-
sages are typically small sound files. The peer responsible
for the ResourceID of a particular user can store these
files. When the user comes online and attempts to regis-
ter, he or she will find the messages waiting. The sender
uses the security certificates to encrypt voicemail mes-
sages left for a user.

REDUNDANCY
Since the devices in the network might come and go,
particularly in the case of a global network of home users,
redundancy is a critical feature. In most cases, each item
of information (registrations, voicemail, etc.) is stored on
at least three alternate servers. Various mechanisms have
been employed for this, including the three nearest to
the hash value, or using three different hash mechanisms
to produce three different locations for redundancy.
Commercial P2PSIP systems all incorporate some form of
redundancy, as will the IETF standard that emerges.

STANDARDIZATION EFFORTS
Meetings on standardization have been ongoing at the
IETF since March 2005. In the beginning these meetings
were ad hoc and informal, and most recently led to a for-
mal BoF (birds-of-a-feather) session at IETF-67 in Novem-
ber 2006. Interest among IETF participants is strong; the
P2PSIP BoF was the best attended of all the sessions at
IETF-67. As of this writing, the IETF is in the final stages
of forming a full working group to evaluate P2PSIP tech-
nology and develop a standard.

In the meantime, the participants in the informal
meetings at IETF have been very busy. Attendance at
these meetings has approached 200, making them better
attended than nearly any other meetings at the IETF. A
community Web page (http://www.p2psip.org) has docu-
mented the efforts of the work to date. Nearly two dozen
drafts have been written and are being considered by the
informal group, and the mailing list for discussion of
P2PSIP technology has hundreds of messages a month.

It appears likely that the IETF will adopt a standard for
P2PSIP in the near future. Current technical points that
are being debated include which DHT is to be used and
whether messages for maintaining the DHT are passed as
SIP messages or some other protocol. The most mature of

Session Initiation
ProtocolFO

CU
S

ACM QUEUE March 2007 41 more queue: www.acmqueue.com

the proposals uses SIP messages to convey DHT informa-
tion. One motivation for using SIP is simplicity of imple-
mentation. Because the device already speaks SIP, the
need for a second protocol stack is eliminated. Addition-
ally, SIP as a transport for the DHT maintenance informa-
tion seems the logical choice, as SIP already incorporates
many features that would otherwise need to be defined
in a new protocol, including security primitives, NAT tra-
versal, and both redirect and proxy routing mechanisms.

In the meantime, vendors are implementing their
own flavors and variations, which will provide deploy-
ment experience for the emerging standard. Most of the
interested parties have expressed an interest in moving to
an IETF standard as it emerges.

THE FUTURE OF P2PSIP
P2PSIP won’t be a replacement for SIP and was never
intended as such. It is an enhancement and companion
to SIP, enabling SIP to be used in scenarios where it might
not have otherwise been easily deployed. It leverages and
extends the work and the deployed infrastructure of the
SIP community. Conventional client-server SIP will con-
tinue to be the preferred choice for many deployments,
and in some locations, systems that incorporate both
conventional and P2P portions are likely to emerge.

P2PSIP is available today from a number of vendors,
but we are at the very beginning of the adoption curve.
Today, the various implementations are still proprietary,
causing interoperability issues, but the standardization
work of the IETF will improve the situation in the future.
P2PSIP appears poised to become a powerful tool in the
application developer’s arsenal. It is likely to find wide-
spread adoption in VoIP for small-enterprise systems,
disconnected and ad hoc deployments, and global, decen-
tralized deployments.

It also seems likely to be a strong contender for a pro-
tocol in IPTV and between consumer electronics devices
in the home, where it can be used to cluster components
and allow them to establish multimedia sessions between
themselves. If current trends hold, there may be a num-
ber of P2PSIP-enabled devices in your future. Q

REFERENCES
1. Rosenberg, J., et al. 2002. SIP: Session Initiation Proto-

col. RFC 3261 (June).
2. Bryan, D. A., Lowekamp, B. B., Jennings, C. 2005.

SOSIMPLE: A server-less, standards-based P2P SIP com-
munications system. First International Workshop on
Advanced Architectures and Algorithms for Internet Delivery
and Applications (June).

3. Singh, K., Schulzrinne, H. 2005. Peer-to-peer Internet
telephony using SIP. 15th International Workshop on
Network and Operating Systems Support for Digital Audio
and Video (June).

4. Bryan, D., Lowekamp, B., Jennings, C. 2006. A P2P
approach to SIP registration and resource location. IETF
Internet Draft (work in progress, October).

5. Willis, D., Bryan, D., Matthews, P., Shim, E. 2006. Con-
cepts and terminology for peer-to-peer SIP. IETF Internet
Draft (work in progress, November).

6. Stoica, I., et al. 2003. Chord: A scalable peer-to-peer
lookup protocol for Internet applications. IEEE/ACM
Transactions on Networking (February).

7. Maymounkov, P., Mazieres, D. 2002. Kademlia: A peer-
to-peer information system based on the XOR metric.
Proceedings of the 1st International Workshop on Peer-to-
Peer Systems (March).

8. Rhea, S., Geels, D., Roscoe, T., Kubiatowicz, J. 2003.
Handling churn in a DHT. Technical Report UCB//CSD-
03-1299, University of California, Berkeley (December).

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

DAVID BRYAN plays an active role in IETF P2PSIP efforts
and has published numerous IETF drafts, academic papers,
and industry trade articles on the subject. He is active in the
SIP community, including heading up www.p2psip.org, the
leading community Web site for P2PSIP, and is involved with
SIPFoundry, the reSIProcate project, and www.vovida.org. He
was co-founder and CTO of Jasomi Networks, a pioneer in
the SIP Session Border Controller market, and he previously
worked for Cisco Systems and Vovida Networks. He holds
bachelor’s degrees in computer science and physics from
Richard Stockton College and a master’s degree in computer
science from the College of William and Mary, where he is
completing his Ph.D.
BRUCE LOWEKAMP works with SIPeerior and is an assistant
professor at the College of William and Mary. His research
covers a wide range of topics in distributed systems and
applications. He has published numerous articles on perfor-
mance monitoring, peer-to-peer communications, adap-
tive applications, virtual machines for realtime distributed
visualization, and simulation of ad hoc mobile networks. He
has served as co-chair of the GGF’s (Global Grid Forum’s)
Network Measurements working group and is a contributor
to several GGF recommendations and IETF Internet drafts. He
received his B.S. from Virginia Tech and his Ph.D. in com-
puter science from Carnegie Mellon University.
© 2007 ACM 1542-7730/07/0300 $5.00

